Rapamycin Suppresses Self-Renewal and Vasculogenic Potential of Stem Cells Isolated from Infantile Hemangioma

نویسندگان

  • Shoshana Greenberger
  • Siming Yuan
  • Logan A. Walsh
  • Elisa Boscolo
  • Kyu-Tae Kang
  • Benjamin Matthews
  • John B. Mulliken
  • Joyce Bischoff
چکیده

Infantile hemangioma (IH) is a common childhood vascular tumor. Although benign, some hemangiomas cause deformation and destruction of features or endanger life. The current treatments, corticosteroid or propranolol, are administered for several months and can have adverse effects on the infant. We designed a high-throughput screen to identify the Food and Drug Administration-approved drugs that could be used to treat this tumor. Rapamycin, an mTOR (mammalian target of Rapamycin) inhibitor, was identified, based on its ability to inhibit proliferation of a hemangioma-derived stem cell population, human vasculogenic cells, which we had previously discovered. In vitro and in vivo studies show that Rapamycin reduces the self-renewal capacity of the hemangioma stem cells, diminishes differentiation potential, and inhibits the vasculogenic activity of these cells in vivo. Longitudinal in vivo imaging of blood flow through vessels formed with hemangioma stem cells shows that Rapamycin also leads to regression of hemangioma blood vessels, consistent with its known anti-angiogenic activity. Finally, we demonstrate that Rapamycin-induced loss of stemness can work in concert with corticosteroid, the current standard therapy for problematic hemangioma, to block hemangioma formation in vivo. Our studies reveal that Rapamycin targets the self-renewal and vascular differentiation potential in patient-derived hemangioma stem cells, and suggests a novel therapeutic strategy to prevent formation of this disfiguring and endangering childhood tumor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells: History, Isolation and Biology

Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Deregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance

Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...

متن کامل

Functional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy

Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...

متن کامل

Assessment of Culture Condition and In Vitro Colonization Ability of Human Spermatogonial Stem Cells: A Review Article

Spermatogenesis is a highly complex and regulated process in which germ stem cells differentiate into spermatozoa. These stem cells, called spermatogonial stem cells (SSCs), are in the base of seminiferous tubules and have the ability of self-renewal and differentiation into functional germ cells. Due to this ability, SSCs can restore spermatogenesis after testicular damage caused by cytotoxic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2011